1967

Esy = cos (T — 61) cos ¢y sin (¢p1 — ¢2)
— cos T'sin ¢1 €os (¢1 — ¢2)
=CcosT + DsinT 1)
where
T=wt—08 —8 —7T (2)

and C, D, E, F are defined by these equations.

The resultant of these two components
sweeps out an ellipse as T increases, and the
cross polarization is simply the ratio of the
semi-major and semi-minor axes. These may
be found by rotating the Esn, E:(X, ¥) axes
by a positive angle « to a new pair of axes
(x, »). « is chosen so that the cross product xy
of the ellipse equation in (x, y) coordinates
vanishes.

This criterion is found to be

CORRESPONDENCE

Solid-State Plasma Controlled Non-
reciprocal Microwave Device

Various types of nonreciprocal microwave
devices have been developed through the use
of the tensor permeability of magnetic ma-
terials such as ferrites.! In a solid-state plasma
such as a semiconductor, the conductivity be-
comes a tensor quantity under a dc magnetic
field. Toda? developed an isolator using a
solid-state plasma under a transverse mag-
netic field and obtained the isolation ratio of
about 10 dB. Recently, we have reported the
result of the experimental observation of the
microwave Faraday effect in a solid-state
plasma waveguide under a longitudinal mag-
netic field. It was found that a large amount
of rotation of the plane of polarization with
very small attenuation of power can be ob-

@ = itan—l ; 2(CE + DF) (3) tained in a solid-state plasma under a rela-
2 E* + F* — (C* — Dt tively high magnetic field. In this paper, an
d the elli tion is th experimental nonreciprocal microwave de-
and the ellipse equation 1s then vice which makes use of the Faraday rotation

z + ¥ 1 @) in a solid-state plasma is presented.
RS The experimental microwave device con-
where sists of two rectangular waveguides, two re-
Rt = [ (CF — DE)? ] ®)

(C? 4 D?) cos?a — (CE + DF)sin 2a + (E? + F?) sin?a
and

Se

(CF — DE)*

The cross polarization is then

@] o

The necessary functions of C, D, E, F are
found to be

CPqg = — 10

C? 4+ D? = cos?¢1-sin? (1 — @)
+ sin® ¢y - cos? (¢1 — é2)
— §-8in 2¢;-sin (261 — 2¢2)-cos 6y
E? 4 F* = cos? ¢1-cos? (p1 — ¢2)
+ sin?¢;-sin? (¢1 — p2)
+ 1-5in 2¢1+5in (21 — 2¢b3) - COS 6s
CE-+DF = %-c082¢1-8in (2¢1 — 2¢3) - €08 02
+ % sin? (¢1 - qbg) -sin 2¢1
-00s (01 — 82) — % cos? (¢1 — b2)
-sin 26 cos (61 -+ 02). ]
Figures 2 to 7 give computed results for
the worst cross polarization (¢. was varied in
steps and worst value chosen) for various rea-
sonable combinations of ¢1, 01, 6. The expres-
sion for cross polarization may be greatly

simplified by assuming differential phase shifts
close to =/2 and ¢, close to = /4, if desired.
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- [(02 + D?) sin?« + (CE + DF)sin 2a + (E? 4 F?) cos? a:l‘

sistance vanes, and a solid-state plasma Fara-
day rotator as shown in Fig. 1. The Faraday
rotator consists of a circular waveguide
(7 mm ID) in which a disk (7 mm D X1 mm T)
of an n-type InSb single crystal (#,=1014/cm?3,
1e=70000 cm?/V.s, p=0.1 Q-cm, at 77°K)
and two quarter-wavelength impedance trans-
formers (e, =4) are mounted as shown in Fig.
1. The impedance transformers are placed at
both sides of the InSb disk to minimize the
wave reflections from the surfaces of the InSb
disk. The resistance vanes are mounted in
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such a way as to attenuate the components of
electric field which are parallel to the broad
walls of the rectangular guides. The transi-
tions between the rectangular and circular
guides are made smooth by means of tapered
transitions. The two rectangular guides are
rotated 45° with respect to each other.

A linearly polarized wave, after passing
through the solid-state plasma, becomes an
elliptically polarized wave in which the major
axis of polarization is rotated through an
angle with respect to the plane of polarization
of the incident wave. The angle of the Fara-
day rotation © and the elipticity of polariza-
tion & vary as a function of the magnetic field
B,. (Details of the principle of the Faraday
effect in a solid-state plasma can be found
elsewhere.?) The direction of the rotation de-
pends on the direction of propagation with
respect to the direction of the magnetic field.
For example, if the magnetic field is applied in
the direction as shown in Fig. 1, the wave
propagating from left to right experiences
clockwise rotation due to the Faraday rotator,
while the wave propagating in the opposite
direction experiences counterclockwise rota-
tion.

Let T be the transmission coefficient of the
Faraday rotator. Then the insertion loss of the
device for the transmission from left to right
will be

Ly = — 10log [T2{cos? (O — 45°)

+ &% gin? (O — 45°)} |
and for the transmission in the opposite direc-
tion, we get
Ly = — 10 log [T%{cos? (© + 45°)

+ &2 sin? (O + 45°)}]
Thus we can achieve nonreciprocal transmis-
sion through this device. By varying the mag-
netic field, we can control © and in turn we can
control L; and L,. When ©=45°+nX180°
where # is an integer, the difference between
L; and L, will be maximized. By reversing the
direction of the magnetic field, we can switch
L; and L, from maximum to minimum or vice
versa. Thus the experimental device can be
used as an attenuator, isolator, or switch.

Fig. 1. An experimental solid-state plasma controlled nonreciprocal microwave device.
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The characteristics of the experimental
device were measured under various magnetic
fields using the set-up as shown in Fig. 2. The
device was placed between a pair of poles of
a magnet and immersed in liquid nitrogen to
cool the InSb crystal so that g, and p were
increased. The klystron was tuned to
f=135.95 GHz. Figure 3 shows the measured
nonreciprocal transmission characteristics.
The points where By=1.1, 2.8, and 8.5 kg
correspond to ©=225°,135°, and 45°, respec-
tively. In particular, at Bo=8.5 kg, an excel-



58 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
DIRECTIONAL
COUPLER
PRECISION VSWR E-~-H
KLYSTRON = ATTENUATOR ATTENUATOR DETECTOR |  [TUNER

POWER SUPPLY
& MODULATOR

LN,

EXPERIMENTAL.
DEVICE

Fig. 2. Experimental set-up for the measurement of characteristics of the experimental microwave device.
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Fig. 3. Measured nonreciprocal transmission characteristics of the
experimental microwave device as a function of magnetic field.

lent isolation ratio was achieved. The mea-
sured isolation ratio at this point was 30 dB,
i.e., the ratio of 1000 to 1 in power between
L; and L..

We have thus demonstrated an example of
possible microwave device applications of the
Faraday effect in solid-state plasmas. The
theoretical upper limit of frequency of the
solid-state plasma device will appear at the
cyclotron resonant frequency which is higher
than 1000 GHz in the present case. Although
the present experiment was conducted at a
K.-band frequency, the technique can, there-
fore, be extended to higher frequency regions
such as submillimeter waves.

H. J. Kuno

W. D. HERSHBERGER
Dept. of Engrg.
University of California
Los Angeles, Calif.

Further Generalization of
Waveguide Theorems

In a recent paper by Laxpati and Mittra
[L], the bidirectional waveguide theorems
[2], [3] were extended to both periodic and
open waveguide structures. In the original

Manuscript received July 22, 1966. This work was
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ence Foundation Grant GK-614,

derivation of the theorems [2], [3] an artifice
was employed in which Poynting’s theorem
was applied to a standing complex wave set up
in the general bidirectional waveguide by a
shorting plane, The point was well taken in the
recent paper [1] that a short-circuit termina-
tion is not necessary and that the same results
may be derived in just as straightforward a
manner by considering a termination of arbi-
trary, non-zero rteflection coefficient which
also sets up a complex standing wave. The im-
portant features of the power and pseudo-
energy relations result from the cross terms
arising in the complex standing wave and are
lost if only a traveling-wave without a reflec-
tion is operated on by Poynting’s theorem.
In this ccrrespondence we wish to point
out that the bidirectional-waveguide theo-
rems may be derived even without the artifice
of an imperfect termination. Only the rela-
tions for a single wave in an infinite or
matched waveguide need be considered [4].
Furthermore, the same basic theorems may be
extended to apply to nonbidirectional wave-
guides as well [4]. Also, the constitutive rela-
tions characterizing the medium filling the
waveguide can be generalized to include the
Tellegen medium for which the relations

apply [5]
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The Tellegen medium of course reduces to the
more ordinary anisotropic medium when

JANUARY

and ~ vanish, In this correspondence we shall
confine our attention to the lossless, passive
systems. Thus for the Tellegen medium, the
following relations must apply [5]

el

€ = e ¥ =

E=ga" @

where the superscript (+) has been uvsed to
denote the conjugate transpose of a tensor.
For a waveguide containing the general
Tellegen medium, Maxwell’s equations may
be separated into transverse and longitudinal
ccmponents for a single waveguide mode:

VrE, + TEr = — jol. X Br @)

VrH, +THyp = joi, X Dp (5)
%-Vr X Ep = — juB, )
.-Vr X ET =ijz (7)

where T in general is the complex propaga-
tion constant for the mode. The relations
leading to the waveguide theorems are
formed by cross multiplying (4) by H7* and
then dot multiplying by the unit vector 7,. The
result is

T(Er X Hr*) %,

= joHr* Br — jwE,D.*

- 7-/Z'VT X (EZHT*) (8)
where (7) has also been used. In a similar
manner, we have from (5) and (6)
r*(Er X Hr*) %

= — waT- D* +ijz*Bz

+ 5.V X (H*Er). 9
When (8) and (9) are integrated over the cross
section of the waveguide, we obtain the rela-
ticns!
(@ +iB@E + Q) = j20Unr — Us)  (10)
(@ =8P + Q) = j20(Un: — Uor). (11)
The quantities appearing in these equations

have the definitions of
a) complex power

1o
P4jo-= —2—fET X Ho*1da, (12)

b) transverse magnetic pseudo energy

1 — =
Unr = Zf Hr* Brda, 13)
¢) transverse electric pseudo energy
1 —
U,T = Zf FT-DT*da, (14)

d) longitudinal magnetic pseudo energy

1
= *
Un: 1 f H.*B.da, (15)

e) longitudinal electric pseudo energy

Uy = % f E.D.*da. (16)
An important feature to note at this point is
that the pseudo energies defined here are in
general complex quantities except for the
special case of bidirectional waveguides. For
bidirectional waveguides, they are all pure
real since Br and Dy involve only Hr and Er,
respectively, and B, and D, involve only H,
and E,, respectively.

1 The terms involving the transverse curls vanish by
applying Stokes® Theorem and the boundary conditions
at perfect electric and /or magnetic walls.



